HCAL Calibration with Collisions Data Workflow

Anton Anastassov

(Northwestern University)

HCAL Calibration with Collisions Data

Using a sequence of calibration steps:

- Equalize the response of HCAL in phi for each iEta ring (towers with iEta=const) when possible
- Equalize response across iEta in HB and part of HE for fixed energy
 - Set a scale corresponding to $E_{had}^{cl}/p_{trk} = 1$, where
 - Track: hadron, p_{trk}=50 GeV, MIP signature
 - $E_{had}^{cl} = \sum E_i(twr)$

 Provide a smooth (as much as possible) response function across eta of the detector

Requirements for the calibration

- The HCAL calibrations can not ensure:
 - Equal response for all energies,
 - Not even "flat response" for all energies
- However, the corrections should be:
 - Reproducible
 - Possible to obtained with reasonable amount of data (starting with ~1 week)
 - Use physics objects that can be efficiently triggered on

Fit within allocated trigger rates.

Samples for HCAL calibration with early data

Isolated tracks:

- The main source for the calibrations (reference calibration point defined with respect to tracks)
- Selected with a dedicated trigger:
- MinBias events and Noise samples with no zero suppression (NZS)
 - Data collected in special NZS runs
 - MinBias: dedicated HLT
 - "Noise" sample: MinBias from the time slices in front of the readout window

DiJet samples:

- Selected with the single jet triggers:
 - Jet50: calibration
 - Jet2o, 3o: validation

Getting the calibration samples

- The AlcaReco output files contain all information to perform calibration of a certain type.
- Once the AlcaReco files are produced and moved to CAF, the HCAL DPG has the "operational" responsibilities

Responsibilities for Getting AlcaReco Data

- Development and optimization of the dedicated HLT triggers:
 - Select calibration objects to be sent in AlcaRaw Format
- Development of AlcaReco Producers for the different streams:
 - Produce AlcaReco output at TierO
 (see Grigory Safronov's presentation on triggers and streams)

The version/content of the Producers is tied to the SW release used in data taking/processing

Time sequence of calibration steps

The sequence is determined by the prerequisites for each calibration step

- Intercalibration in phi using isolated tracks and MinBias/Noise events when possible (presentation by Olga K.)
- 2. Energy scale corrections
 - from isolated tracks in HB and part of HE
 - from DiJet E_T balancing in HF and part of HE (presentation by Andrey K.)

 After each calibration step a validation will be performed to ensure that the correction constants perform as expected

Remarks

- Due to limited tracker coverage have to use jets in part of HE and in HF for setting the scale:
 - Changes the nature of the calibration
 - Single particle response will depend on eta in this region
 - Jets are balanced based on E_T
 - Composed of many particles (compared to single isolated tracks)

 The corrections obtained from isolated tracks and di-jets overlap in a ~3-4 iEta rings

Workflow of AlcaReco data processing

- Analyzers select events of interest and store the information in compact ntuples: Run on CAF
- Calibrators take as input the ntuplized data and derive the correction factors
- The constants from different ranges are merged, and after validation, stored in the DB for data Reco

This scheme allows for parallelization of data processing

- Analyzers can process the data in ~several hours (even < 1h)
- Get corrections from the calibrators in ~5-10 min

This part of the workflow allows more flexibility: possible to add improvements, new features and algorithms as needed

Status

- All the code is functional in CMSSW 2_1_X, will migrate to 3_o_X
 - Tested on MC
 - New MinBias/Noise producer based on digis was tested on cosmics
- Further things to consider
 - Filters for bad/anomalous cells
 - Study the effect on calibrations and develop algorithms to handle such cases
 - Study the effect of pile up:
 - Impact on selection efficiency
 - How to handle introduced biases

What's next

- Presentations covering:
 - Factors impacting the calibration
 - Status of workflow steps/components
 - Issues and to-do lists
 - Impact of the calibrations

Your input and suggestions